1= 4%

slow mist

U

Smart Contract Security Audit

1. Executive Summary ... 3

2. Atidit- MethodolOgy -i+imirisiniieiviiuieinbaieintitinbsinintednintoiniidoiobieinetinicbedinbedeinbadrinbaldmbe oo dnintodeds 4
3. Praject:Background: (Cantet)s i it i b e L i g 5
G PrajC Gl TTOTUICTIONE < e R e e 5

S 2 PrOjECt SITIGIURE ot o e R R e S B o TS R R 6

3.3 CONTTACT SHUCTUIFE torrssiorersstavarnssieasnssiincnsssinsnss st sinrnsssiornssiarorsstasorss 4iasesshEncestininsn st sinenet siawans siarorssasorssteiarosts 6

AL COTELE O RV TER osmsrcmom ot e S PR D KR 7
A1 MAIN FlE HASH:+-+seseeeeereseeeeeete ettt ea e a sttt 7

4.2 Main funCtion VisIBIlIEy @nalySis: i it s o i A A L b 8

AL TR /UG R crertrirtriciririndrindoiit o rtoortnfodnbottrbn bt i B oS Bttt e 14
4,3.1: The risk that the: liquidity pool cannot be removed::: it i 14

4.3.2 Part of the COAe iS reAUNTANT: -+ wwresrrrrrrimereritieeie sttt 16

S AR E S Ul S NI NI IR NI NI AICICI TSN AN NICIAI RIS IR 18
5.1 LOWTiSK VUINEIADIIity- -+ :eevesseimssseimsisiaisieniaisini st i 18

5.2 ENHANCEMERT SUQQESHIONS: it sttt it b e L e L e s 18

5.2 CoMEUEG fiensmscsesnsnsasmonsnsimintsnsmmecasmonibomrnioniniedamsnonsasnanaasamansnsainiansiniea g ncnesoninsesarinaasaoononsads 18

B SEATOIMIENT: v starertnd ciarts i abtss 1insvs i indest st oh s bsfarnd s arorbs Faiarir hiases s 1Eadent i airst oL 1 atorb s Eafors s bafores e aronbgfasent i adns 19

1. Executive Summary

On Aug. 17, 2020, the SlowMist security team received the JustSwap team's security audit

application for JustSwap system, developed the audit plan according to the agreement of both

parties and the characteristics of the project, and finally issued the security audit report.

The SlowMist secu

rity team adopts the strategy of "white box lead, black, grey box assists" to

conduct a complete security test on the project in the way closest to the real attack.

SlowMist Smart Contract DApp project test method:

Black box Conduct security tests from an attacker's perspective externally.
testing

Grey box Conduct security testing on code module through the scripting tool, observing
testing the internal running status, mining weaknesses.

White box Based on the open source code, hon-open source code, to detect wether there
testing are vulnerabilities in programs suck as nodes, SDK, etc.

%2}

lowMist Smart Co

ntract DApp project risk level:

Critical

vulnerabilities

Critical vulnerabilities will have a significant impact on the security of the DApp

project, and it is strongly recommended to fix the critical vulnerabilities.

High-risk

vulnerabilities

High-risk vulnerabilities will affect the normal operation of DApp project. It is

strongly recommended to fix high-risk vulnerabilities.

Medium-risk

Medium vulnerability will affect the operation of DApp project. It is recommended

vulnerablities | to fix medium-risk vulnerabilities.

Low-risk

vulnerabilities

Low-risk vulnerabilities may affect the operation of DApp project in certain

scenarios. It is suggested that the project party should evaluate and consider

whether these vulnerabilities need to be fixed.

Weaknesses

There are safety risks theoretically, but it is extremely difficult to reproduce in

engineering.

Suggestions

Enhancement | There are better practices for coding or architecture.

2. Audit Methodology

Our security audit process for smart contract includes two steps:

Smart contract codes are scanned/tested for commonly known and more specific
vulnerabilities using public and in-house automated analysis tools.
Manual audit of the codes for security issues. The contracts are manually analyzed to look

for any potential problems.

Following is the list of commonly known vulnerabilities that was considered during the audit of the

smart contract:

Reentrancy attack and other Race Conditions
Replay attack

Reordering attack

Short address attack

Denial of service attack

Transaction Ordering Dependence attack

® Conditional Completion attack

® Authority Control attack

® Integer Overflow and Underflow attack
® TimeStamp Dependence attack

® (Gas Usage, Gas Limit and Loops

® Redundant fallback function

® Unsafe type Inference

® Explicit visibility of functions state variables
® [ogic Flaws

® Uninitialized Storage Pointers

® Floating Points and Numerical Precision
® tx.origin Authentication

® "False top-up" Vulnerability

® Scoping and Declarations

3. Project Background (Context)

3.1 Project Introduction

JustSwap is an exchange protocol on TRON for exchanges between TRC20 tokens.

Project website:

https://justswap.io/

Audit code file:

justswap.tar.gz:

MD5: be4b075dc236d2f614b06d6da419603b

3.2 Project Structure

justswap:

—— README.md
—— interfaces
| —— lJustswapExchange.sol
| —— IJustswapFactory.sol
| —— ITRC20.sol
—— justswap
| —— JustswapExchange.sol
| L—— JustswapFactory.sol
—— tokens
| L——TRC20.s0l
—— utils
—— ReentrancyGuard.sol
—— SafeMath.sol

—— TransferHelper.sol

3.3 Contract Structure

JustSwap DApp is mainly divided into two parts, namely the contract factory and the token

exchange part. Among them, the JustswapFactory contract is responsible for creating an

independent exchange contract for each TRC20 token. The JustswapExchange contract is

responsible for realizing the functions of providing a liquidity pool for token exchange, handling fee

processing and custom capital pools. Each exchange contract is associated with a TRC20 token,

and has a liquidity pool of TRX and this TRC20 token to realize the exchange function between TRX

and token, the fee generated during the exchange process are stored in the liquidity pool. The overall

structure of the contract is as follows:

C'.'"E%Tbﬂi SRR RS
* slow mist o

~—Input
TRX Pool
Output—=
—=
—Input
ERC20 | 1|
Exchange Token
Output—=
Factory
—nput
Exchange ERC20 | || .sonees
Output— Token
— —|nput
ERC20
Token ||| 77777
Output—#=
4. Code Overview
4.1 Main File Hash
No File Name SHA-1 Hash
1 JustswapExchange.sol 64c33c94f379890d580¢c5971ec44073cd42c7e7c
2 TRC20.sol c02bb96b3a004f3b82db83a80b1c53abe3426992
3 SafeMath.sol 50f1e0e4fd6bc2002e4111221991382f18e0fef4

@;5; BEBE comxpersne

;" slow mist

4 ITRC20.s0l c130889347ff735dbe86eal35af3799a67350e92¢
5 I[JustswapFactory.sol fd2b8e7b53515bf242059bd1b47cdcdc9b2a0227
6 IJustswapExchange.sol 3b8d8cbef22e2f418f50ff1e61cf6140359ab6f8

7 ReentrancyGuard.sol 8170dd07eeedeb2402ad65f3323eadb0dc2d8709
8 TransferHelper.sol d6fe29a53d7f142e6a296e198658a28bf5ce8945
9 JustswapFactory.sol 84d90357c979f5f81991551986033ccf6589a729

4.2 Main function visibility analysis

Contract Name

JustswapExchange

Function Name Visibility
Implementation TRC20, ReentrancyGuard
setup Public
getinputPrice Public
getOutputPrice Public
trxToTokenlnput Private
trxToTokenSwaplnput Public
trxToTokenTransferlnput Public
trxToTokenOutput Private
trxToTokenSwapQutput Public
trxToTokenTransferOutput Public

B BERB commersns
- slow mist

tokenToTrxInput Private
tokenToTrxSwaplnput Public
tokenToTrxTransferlnput Public
tokenToTrxOutput Private
tokenToTrxSwapOutput Public
tokenToTrxTransferOutput Public
tokenToTokenlnput Private
tokenToTokenSwaplnput Public
tokenToTokenTransferlnput Public
tokenToTokenOutput Private
tokenToTokenSwapOutput Public
tokenToTokenTransferOutput Public
tokenToExchangeSwaplnput Public
tokenToExchangeTransferinput Public
tokenToExchangeSwapOutput Public
tokenToExchangeTransferOutput Public
getTrxToTokenlnputPrice Public
getTrxToTokenQutputPrice Public
getTokenToTrxInputPrice Public

B BERB commersns
- slow mist
getTokenToTrxOutputPrice Public
tokenAddress Public
factoryAddress Public
addLiquidity Public
removeliquidity Public
Implementation —
totalSupply Public
balanceOf Public
allowance Public
transfer Public
approve Public
transferFrom Public
TRC20
increaseAllowance Public
decreaseAllowance Public
_transfer Internal
_mint Internal
_burn Internal
_approve Internal
_burnFrom Internal

10

B BERB commersns
- slow mist
Library —
mul Internal
div Internal
SafeMath
sub Internal
add Internal
mod Internal
Interface E—
transfer External
approve External
ITRC20 transferFrom External
totalSupply External
balanceOf External
allowance External
Interface E—
initializeFactory External
createExchange External
[JustswapFactory
getExchange External
getToken External
getTokenWihld External

11

I ==
C’.-' 1B 4% SRS EE, sze

;" slow mist

Interface E—
getlnputPrice External
trxToTokenTransferlnput External
trxToTokenSwapQOutput External
trxToTokenTransferOutput External
tokenToTrxSwaplnput External
tokenToTrxTransferlnput External
tokenToTrxSwapOutput External
tokenToTrxTransferOutput External
[JustswapExchange tokenToTokenSwaplnput External
tokenToTokenTransferlnput External
tokenToTokenSwapOutput External
tokenToTokenTransferOutput External
tokenToExchangeSwaplnput External
tokenToExchangeTransferlnput External
tokenToExchangeSwapOutput External
tokenToExchangeTransferOutput External
getTrxToTokenlnputPrice External
getTrxToTokenOQutputPrice External

12

B BERB commersns
- slow mist
getTokenToTrxInputPrice External
getTokenToTrxOutputPrice External
tokenAddress External
factoryAddress External
addLiquidity External
removelLiquidity External
ReentrancyGuard Implementation —
Library —
safeApprove Internal
TransferHelper
safeTransfer Internal
safeTransferFrom Internal
Implementation —
initializeFactory Public
createExchange Public
JustswapFactory
getExchange Public
getToken Public
getTokenWithld Public

13

4.3 Code Audit

4.3.1 The risk that the liquidity pool cannot be removed

“address(token).safeTransferFrom(msg.sender, address(this), token_amount)" is used in the
addLiquidity function, and “address(token).safeTransfer(msg.sender, token_amount)" is used in the
removeliquidity function. The two are inconsistent it may cause the risk that liquidity cannot be
removed. For example: The return value of a contract's transferFrom function conforms to the return
value specification for TRC20 tokens defined in the TIP20 standard, but the return value of the
transfer function does not conform to the return value specification for TRC20 tokens defined in the
TIP20 standard. This may cause the addLiquidity operation to succeed, but the removelLiquidity
operation cannot succeed.

Code location: File JustswapExchange.sol line 631, 660

function addLiquidity(uint256 min_liquidity, uint256 max_tokens, uint256 deadline) public payable nonReentrant returns
(uint256) {

require(deadline > block.timestamp && max_tokens > 0 && msg.value > 0, 'JustExchange#addLiquidity:
INVALID_ARGUMENT');

uint256 total_liquidity = _totalSupply;

if (total_liquidity > 0) {
require(min_liquidity > 0, "min_liquidity must greater than 0");
uint256 trx_reserve = address(this).balance.sub(msg.value);
uint256 token_reserve = token.balanceOf(address(this));
uint256 token_amount = (msg.value.mul(token_reserve).div(trx_reserve)).add(1);

uint256 liquidity_minted = msg.value.mul(total_liquidity).div(trx_reserve);

require(max_tokens >= token_amount && liquidity_minted >= min_liquidity, "max tokens not meet or liquidity_minted
not meet min_liquidity");
_balances[msg.sender] = _balances[msg.sender].add(liquidity_minted);

_totalSupply = total_liquidity.add(liquidity_minted);

14

require(address(token).safeTransferFrom(msg.sender, address(this), token_amount), "transfer failed");

emit AddLiquidity(msg.sender, msg.value, token_amount);

emit Snapshot(msg.sender,address(this).balance,token.balanceOf(address(this)));

emit Transfer(address(0), msg.sender, liquidity_minted);

return liquidity_minted;

} else {

require(address(factory) |= address(0) && address(token) |= address(0) && msg.value >= 10_000_000,
"INVALID_VALUE");

require(factory.getExchange(address(token)) == address(this), "token address not meet exchange");

uint256 token_amount = max_tokens;

uint256 initial_liquidity = address(this).balance;

_totalSupply = initial_liquidity;

_balances[msg.sender] = initial_liquidity;

require(address(token).safeTransferFrom(msg.sender, address(this), token_amount), "tranfer failed");
emit AddLiquidity(msg.sender, msg.value, token_amount);

emit Snapshot(msg.sender,address(this).balance,token.balanceOf(address(this)));

emit Transfer(address(0), msg.sender, initial_liquidity);

return initial_liquidity;

function removeLiquidity(uint256 amount, uint256 min_trx, uint256 min_tokens, uint256 deadline) public nhonReentrant
returns (uint256, uint256) {
require(@amount > 0 && deadline > block.timestamp && min_trx > 0 && min_tokens > 0, "illegal input parameters");
uint256 total_liquidity = _totalSupply;
require(total_liquidity > O, "total_liquidity must greater than 0");
uint256 token_reserve = token.balanceOf(address(this));
uint256 trx_amount = amount.mul(address(this).balance) / total_liquidity;
uint256 token_amount = amount.mul(token_reserve) / total_liquidity;

require(trx_amount >= min_trx && token_amount >= min_tokens, "min_token or min_trx not meet");

_balances[msg.sender] = _balances[msg.sender].sub(amount);
_totalSupply = total_liquidity.sub(amount);

msg.sender.transfer(trx_amount);

require(address(token).safeTransfer(msg.sender, token_amount), "transfer failed");
emit RemovelLiquidity(msg.sender, trx_amount, token_amount);
emit Snapshot(msg.sender,address(this).balance,token.balanceOf(address(this)));

emit Transfer(msg.sender, address(0), amount);

15

return (trx_amount, token_amount);

}

Fix status: After confirming with the project party, the TRC20 specification requires that the transfer

and transferFrom conform to the specified format. Justswap only supports TRC20 tokens approved

by TronScan. All tokens that do not conform to the TRC20 specification will not be supported by

JustSwap.

4.3.2 Part of the code is redundant

An initializeFactory function exists in a JustswapFactory contract to initialize the contract. During

initialization, an exchangeTemplate with a non-zero address is passed in and determined before

creating a transaction contract in the createExchange function. However, exchangeTemplate is not

used after that, and the transaction contract is created directly using 'new JustswapExchange()'. So

the initializeFactory function and the check for an exchangeTemplate in the createExchange

function are redundant. The _mint function in the TRC20 contract is internal and not called by other

contracts, and the _burnFrom function is internal and not called by other contracts. This code is

redundant. The safeApprove function in the TransferHelper contract has internal visibility and is not

invoked by any other contract. This code is redundant.

Code location: File JustswapFactory.sol line 25-29, 33. File TRC20.sol line 139, 183. File

TransferHelper.sol line 6.

function initializeFactory(address template) public {
require(exchangeTemplate == address(0), "exchangeTemplate already set");
require(template |= address(0), "illegal template");

exchangeTemplate = template;

16

function createExchange(address token) public returns (address) {
require(token != address(0), "illegal token");
require(exchangeTemplate |= address(0), "exchangeTemplate not set");
require(token_to_exchange[token] == address(0), "exchange already created");
JustswapExchange exchange = new JustswapExchange();
exchange.setup(token);
token_to_exchange[token] = address(exchange);
exchange_to_token[address(exchange)] = token;
uint256 token_id = tokenCount + 1;
tokenCount = token_id;
id_to_token[token_id] = token;
emit NewExchange(token, address(exchange));

return address(exchange);

function _mint(address account, uint256 value) internal {

require(account != address(0));
_totalSupply = _totalSupply.add(value);

_balances[account] = _balances[account].add(value);

emit Transfer(address(0), account, value);

function _burnFrom(address account, uint256 value) internal {
_burn(account, value);
_approve(account, msg.sender, _allowed[account][msg.sender].sub(value));

function safeApprove(address token, address to, uint value) internal returns (bool){

(bool success, bytes memory data) = token.call(abi.encodeWithSelector(0x095ea7b3, to, value));

return (success && (data.length == O || abi.decode(data, (bool))));

Fix status: After confirming with the project party, no impact on the business, and the code will not be

modified.

17

5. Audit Result

5.1 Low-risk Vulnerability

® Remove liquidity pool design defects

5.2 Enhancement Suggestions

e Part of the code is redundant

5.3 Conclusion

Audit Result : Passed

Audit Number : 0X002008250002

Audit Date : Aug. 25, 2020

Audit Team : SlowMist Security Team

Summary conclusion: The are 2 security issues found during the audit. After communication and
feedback, with the Anyswap team, confirms that the risks found in the audit process are within the

tolerable range.

18

6. Statement

SlowMist issues this report with reference to the facts that have occurred or existed before the
issuance of this report, and only assumes corresponding responsibility base on these.

For the facts that occurred or existed after the issuance, SlowMist is not able to
judge the security status of this project, and is not responsible for them. The security audit analysis
and other contents of this report are based on the documents and materials provided to SlowMist by
the information provider till the date of the insurance this report (referred to as "provided
information"). SlowMist assumes: The information provided is not missing, tampered with, deleted or
concealed. If the information provided is missing, tampered with, deleted, concealed, or inconsistent
with the actual situation, the SlowMist shall not be liable for any loss or adverse effect resulting
therefrom. SlowMist only conducts the agreed security audit on the security situation of the project
and issues this report. SlowMist is not responsible for the background and other conditions of the

project.

19

BRI 1%

slow mist

G

Official Website
www.slowmist.com

E-mail
team@slowmist.com

Twitter
@SlowMist_Team

WeChat Official Account

	1. Executive Summary
	2. Audit Methodology
	3. Project Background (Context)
	3.1 Project Introduction
	3.2 Project Structure
	3.3 Contract Structure

	4. Code Overview
	4.1 Main File Hash
	4.2 Main function visibility analysis
	4.3 Code Audit
	4.3.1 The risk that the liquidity pool cannot be r
	4.3.2 Part of the code is redundant

	5.Audit Result
	5.1 Low-risk Vulnerability
	5.2 Enhancement Suggestions
	5.3 Conclusion

	6. Statement

